

ー様流中に置かれた急峻な単純地形まわりの気流性状の評価 —3次元孤立峰モデルの場合—

Evaluation on Wind Characteristics around a Steep Simple Terrain in a Uniform Flow

-Case of a Three-Dimensional Isolated-Hill Model-

内田 孝紀^{*1} 杉谷 賢一郎^{*2} 大屋 裕二^{*3} Takanori UCHIDA, Kenichirou SUGITANI, Yuji OHYA

SUMMARY

The purpose of this research is to construct a database of a non-stratified airflow past a steep simple terrain under an imposition of a uniform flow, and, in addition, is to do the accuracy inspection of the numerical model under development at present. This numerical model is referred to as the RIAM-COMPACT (<u>Research Institute for Applied Mechanics</u>, Kyushu University, <u>Computational Prediction of Airflow over Complex Terrain</u>), and is for the purpose of the prediction of airflow over complex terrain with several m to several km.

This paper describes the experimental and numerical study of a non-stratified airflow past a three-dimensional isolated-hill in a uniform flow as the second phase. The Reynolds number, based on the uniform flow and the height of the hill, is about 10^4 . Airflows around the hill include the unsteady vortex shedding. Attention is focused on airflow characteristics in a wake region. For this purpose, the velocity components in the streamwise direction were measured with a SFP (<u>Split-Film Probe</u>) in the wind tunnel experiment. In addition, the flow visualization was performed by using the smoke-wire technique. Through comparison of the experimental and numerical results, they showed a good agreement. The accuracy of both of the wind tunnel experiment by the SFP and also numerical simulation by the RIAM-COMPACT were confirmed as the result.

1. はじめに

一般に、LES(Large-Eddy Simulation)などの非定常 風況シミュレーションの計算コードを開発する際には、 最初のステップとして流入気流プロファイルの勾配や 乱れ、地形表面の粗度の影響を省略した、すなわち、 単純化・理想化された状況でその予測精度(風に対す る地形効果)を検証し、次のステップとして実際の自然 風を対象にした計算へ進むことが望ましい.以上の理 由から、計算コードの検証を目的とし、単純化・理想 化された条件設定で行われた風洞実験の需要は極めて高い.しかしながら,そのような実験データはこれまでにほとんど報告されていない^{1,2}.

そこで本研究では、流入気流の乱れや地形表面の 粗度の影響などは省略し、一様流中に置かれた急峻 な単純地形を過ぎる流れ場を対象に風洞実験を行う. この風洞実験の主な目的は、計算コードの予測精度 を検証するためのデータを取得すると同時に、一様 流中での単純地形周辺気流の性状を明らかにするこ

^{*1} 九州大学応用力学研究所 助手 工博

Research Associate, Research Institute for Applied Mechanics, Kyushu University, Dr. Eng. *2 九州大学応用力学研究所 技官

Technical Staff, Research Institute for Applied Mechanics, Kyushu University *3 九州大学応用力学研究所 教授 工博

Professor, Research Institute for Applied Mechanics, Kyushu University, Dr. Eng. (原稿受理年月日:2005年5月11日, 採用決定:2006年2月12日)

とである. 前報²⁾では, 第一段階として主流直交方向 に同じ断面形状を有する2次尾根モデルを対象にし, 逆流と順流が検知可能なSFP(Split-Film Probe)を用 いた風洞実験の結果を示した.同時に、我々のグル ープで開発しているLESに基づいた非定常・非線形 風 況 シミュレータ RIAM-COMPACT(Research Institute for Applied Mechanics, Kyushu University, Computational Prediction of Airflow over Complex Terrain)³⁾による数値シミュレーションを風洞実験と同 一条件で行い、その結果も併せて示した.結果として、 SFPを用いた風洞実験では、モデル下流における流 れの剥離や再付着など,複雑乱流場の挙動が精度 良く再現された. また, これらの結果はRIAM-COMPACT³⁾による数値シミュレーションと良好な一致 を示し、複雑乱流場に対するRIAM-COMPACT³⁾の予 測精度が確認された.

本報では,第二段階として,一様流中に置かれた3 次元孤立峰モデルの風洞実験と数値シミュレーション の結果を,前報²の結果と比較して報告する.両者の 比較を通して,特にモデル背後に形成される渦領域 の大きさの違い,それに伴う気流性状の違い,非定常 な渦放出周期の違いなどを明らかにする.

2. スプリットフィルムプローブ(SFP)による風洞実験

本研究の風洞実験は、九州大学応用力学研究所 の温度成層風洞を用いて行った.但し、気流の安定 度は中立状態とする.この風洞は開放型の吸い込み 式で長さ13.5m×幅1.5m×高さ1.2mの測定胴を有す る.風速範囲は0.5~2.0m/sであり、主流風速を 1.0m/sに設定した際の主流方向の乱れ強さの分布は 0.4%程度である.前報²⁰の2次元尾根モデルと同様、 近寄り流れとして一様流入条件を課すため、以下に 示す二つの工夫を施した(Fig.1参照).一つは、風洞 床面の上流側に高さ11.5cmの台座を置き、この上に3 次元孤立峰モデルを設置した.これは風洞床面に発 達する地面境界層の影響を受けないようにするため である.もう一つは、先端に僅かな傾斜を付けた10cm のアルミ板をモデル前縁から設置し、そこからの流れ の剥離を抑制した(Fig.2も参照).本研究で使用した3 次元孤立峰モデルの断面形状は,前報²の2次元尾 根モデルと同じで以下の式で記述される(Fig.3参照).

z(r)=0.5h \times {1+cos(π r/a)}, r=(x^2+y^2)^{1/2}

(1)

3次元孤立峰モデルはアクリル製で,モデル高さh は10cmとし,実大気スケールの約1/2000を想定して いる.(1)式における地形形状パラメータaは2h(=20cm) とし,急峻な傾斜角度(α≒40度)を有する.モデルの 主流方向にx軸を,主流直交方向にy軸を,鉛直方向 にz軸を設定する.モデル高さhと風洞高さH=1.2mと のブロッケージ比はH/h=12であり,対応する閉塞率 (=h/H×100)は8.3%である.前報²⁾の2次元尾根モデ ルと同様,台座の両端に端板として上流側の角部をと ったアクリル(可視化用)とベニヤ板を設置した.

端板(アクリル)

Fig.1 風洞上流から見た実験のアレンジメント Arrangement of the wind tunnel experiment

気流計測は逆流と順流が検知可能なSFPを用いて 行った.SFPには日本カノマックス(株)のモデル 1288(ストレート型)を用い,合わせて同社の熱線流速 計(1010CTAユニット,1013リニヤライザ)を使用した. 本研究では,SFPの分割面が鉛直軸(z軸)と平行にな るようにモデルの上方から挿入し,鉛直方向(z)にトラ バースしながら主流方向(x)の速度成分(u)のみを測定 した.電圧値の時系列データはオフセット電圧(シフト 電圧)2.5V,アンプ(ゲイン)1倍,カットオフ周波数 200Hzのローパスフィルターの処理を行い,A/D変換 ボードを介してサンプリング周波数500Hzでパーソナ ルコンピュータに取り込む.一連のデータ収集には, カノープス(株)のDSS for Windowsを用いた.電圧値

の時系列データは学内LANでワークステーションに転送し、そこで速度成分(u)に変換して平均速度と標準 偏差の鉛直分布を求める.各測定点におけるデータ 数は50,000個で100sのサンプリング時間(平均時間) である.一様流入風速はU=1.5m/sとし、モデルへの 風向角度は0度である.前報²⁰と同様、モデル高さ h=10cmに基づいたレイノルズ数Re(=Uh/v)は約10⁴ である.なお、気流のモニターやSFPの較正に必要な 風速の基準値の測定には、超音波流速計(カイジョー DA-600, TR-90AX型プローブ)を使用した.

非定常・非線形風況シミュレータRIAM-COMPACTによる数値シミュレーション(LES)

本研究では、3次元孤立峰モデルを過ぎる流れ場 の数値シミュレーション(LES)を風洞実験と同一条件 で行った³⁾.数値計算法は以下に示す通りである.流 れの支配方程式は、フィルタ操作を施された非圧縮 流体の連続の式とナビエ・ストークス方程式である.一 般曲線座標系のコロケート格子に基づき、(有限)差分 法により数値解を求める.計算アルゴリズムは部分段 階法(F-S法)に準じ、時間進行法はオイラー陽解法に 基づく. 圧力に関するポアッソン方程式はSOR法によ り解く.空間項の離散化は、フィルタ操作を行ったナ ビエ・ストークス方程式の対流項を除いて全て2次精 度中心差分とし、対流項は3次精度風上差分とする. ここで、対流項を構成する4次精度中心差分は梶島に よる補間法40(4点差分+4点補間)を用いる. 数値拡散 項の重みは通常使用されるK-Kスキーム⁵⁾タイプのα =3に対して、α=0.5としその影響は十分に小さくする. SGSモデルには標準スマゴリンスキーモデル⁶⁾を用い, 壁面減衰関数を併用した.計算領域と座標系をFig.2 に示す, 主流方向(x), 主流直交方向(v), 鉛直方向(z) に40h(±20h)×9h×10hの空間領域を有し,風洞実 験とほぼ同じである. ここで, hはモデル高さである. 格子点数はx, y, z方向に260×121×71点である. モ デル近傍の計算メッシュをFig.3に示す.x方向の格子 幅は不等間隔に(0.04~1)×h, y方向の格子幅は不 等間隔に(0.05~0.5)×h, z方向の格子幅は不等間 隔に(0.0035~0.5)×hである.x, z方向の格子解像度 は前報²⁾の2次元尾根モデルと同じである. Fig.2に示 すように, 流入境界面はz軸方向に一様流入条件, 側 方境界面と上部境界面は滑り条件, 流出境界面は対 流型流出条件とする.地面は風洞実験と同じ条件を 課すため, 流入境界面から17hまでは滑り条件とし, そ れより下流にのみ粘着条件を課した. レイノルズ数は

isolated-hill model, y=0

風洞実験と同様,モデル高さhと一様流入風速Uに基 づき, Re(=Uh/ν)=10⁴とした.時間刻みはΔt=2× 10⁻³h/Uとした.

4. 結果および考察

a)瞬間場に対する流れの可視化

風洞実験に関して、2次元尾根モデルと3次元孤立 峰モデルを過ぎる風況パターン(瞬間場)の比較を Fig.4に示す.風洞実験では、スモークワイヤー法によ り流れ場の可視化を行った.この方法では以下のよう に流れ場を視覚化する.モデルのすぐ上流で高さレ ベルを変えて数本のワイヤー(0.3mmのニクロム線)を

tracking method, side view(y=0)

平行に配線する. これに流動パラフィンとアルミ粉を 混ぜたものを塗り, ワイヤーに通電して加熱し, 気化し た煙で流れ場を可視化する. 照明装置としてスリットを 付けた1kWのプロジェクターを風洞上部に3~4台設 置し, これからの光でモデルの主流直交方向(y)の中 央面(y=0)を可視化した. カメラによる撮影は標準レン ズを用い, 絞りは1.2でシャッタースピード(露出時間) は1/125sとした. 風速は1.5m/sで, 気流計測と同じ条 件である. 特にモデルの頂部付近で剥離した境界層 (剥離せん断層)の挙動に注目するため, 煙がモデル の表面近くを流れるようにワイヤー高さを調節した.

一方,数値シミュレーションでは,パッシブ粒子追跡法により流れ場の可視化を行った.この結果を Fig.5に示す.パッシブ粒子の放出間隔(無次元時間) はΔt=0.1で合計100コマ(無次元時間t=100~110)の 結果である.2次元尾根モデルと3次元孤立峰モデル ともに,数値シミュレーションと風洞実験で得られた流 れの定性的な挙動は非常に類似している.すなわち, 流れはモデルの頂部付近で剥離し,剥離したせん断 層は孤立した渦(図中の矢印A)に巻き上がる.孤立渦

istantaneous flow pattern past a three-dimensionation isolated-hill, top view($z^*=0.5h$)

は合体して大規模渦(図中の矢印B)を形成し,これが モデル下流に放出されている. 孤立渦と大規模渦の 放出周期と,モデル背後に形成される渦領域の大き さの比較は後述する.

3次元孤立峰モデルを過ぎる流れ場に関して,水 平断面内における数値シミュレーションと風洞実験の 比較をFig.6に示す.両者ともに地面からz*=0.5h上方

(a)y=0, h, 2hから描いた流線図を上から眺めた様子

(b)y=0における流線図を横から眺めた様子

(c)z*=0.0035hから描いた流線図を上から眺めた様子

(d)z*=0.5hから描いた流線図を上から眺めた様子

 (e)z*=0.5hから描いた流線図(d)を横から眺めた様子
Fig.7 3次元孤立峰モデルを過ぎる風況パターン, 種々の位置における流線図, hは3次元孤立峰モデルの高さを示す
Instantaneous flow pattern past a three-dimensional isolated-hill, streamlines at various positions, h shows the height of the hill

の位置を示す.モデル背後では,剥離したせん断層 が形成する小さい渦構造(図中の矢印A,これはFig.4 とFig.5で述べた孤立渦に対応する)と,これらが合体 した大きな渦構造(図中の矢印B,これはFig.4とFig.5 で述べた大規模渦に対応する)が明確に観察される. 幾つかの高さレベルで水平渦の放出周期を検討した が,その結果は後述する.

3次元孤立峰モデルの背後に形成される渦領域の 大きさと,その周辺流れの挙動を調査するため,数値 シミュレーションの結果を用い、 種々の位置から流線 図を描いた.この結果をFig.7に示す.流線図は仮想 粒子を放出し,この軌跡として描いた. Fig.7(a), (b)に 注目すると、y=0(主流直交方向の中央面)の流れはモ デル背後に形成されている渦領域に取り込まれ,3次 元的な挙動を示している. 一方, Fig.7(a)に示すy=h, 2hでは,流れはモデル背後の渦領域にほとんど取り 込まれていない.この結果から、モデル背後に形成さ れる渦領域の主流直交方向(y)の大きさは、2h程度で あることが示唆される(Fig.7(a)に表示). これはFig.9か らも明確に分かる. 地面付近を可視化したFig.7(c)で は、モデルを取り囲むように馬蹄渦が出現している. Fig.7(d), (e)に示す, 地面からz*=0.5hの流線図では, モデルを乗り越える流れは観察されるが、モデル背後 の渦領域に取り込まれる様子は観察されない.

b)時間平均場に対する流れの可視化

2次元尾根モデルと3次元孤立峰モデルを過ぎる流 れの数値シミュレーションに関して,時間平均場に対 して描いた流線図をFig.8に示す.2次元尾根モデル の場合には,主流直交方向(y)の空間平均も同時に 行った.両者ともに時間平均は無次元時間t=200~ 300で行った.モデル背後に形成された渦領域の大き さに注目する.鉛直方向(z)の後流幅は両者で同程度 であるが,主流方向(x)の大きさには明らかな違いが 見て取れる.2次元尾根モデルの場合はモデルの頂 部から約8hであるのに対して,3次元孤立峰モデルの 場合は約3.5hであり,その大きさは約半分程度に小さ い.これに伴い,渦中心位置も2次元尾根モデルの場 合にはモデルの頂部から約4h下流に位置するのに対 し,3次元孤立峰モデルの場合は約2hである.これは, 3次元孤立峰モデルの場合,モデルを越える流れと 迂回する流れが相互干渉しているためと考えられる. 結果として,2次元尾根モデルの場合にはモデルの 頂部付近から剥離したせん断層は下流側地面上に 再付着しているが,3次元孤立峰モデルの場合には その様子はFig.8からは観察されない.

3次元孤立峰モデルに関して,地面からz*=0.5h上 方における水平断面内の速度ベクトル図をFig.9に示 す.モデル背後に主流方向(x)に対して上下対称な渦 領域が形成されている.先に述べたように,その主流 直交方向(y)の大きさは,モデル高さhの約2倍である. 主流方向(x)の大きさは約4hである.

c)時間平均場における乱流諸量の鉛直分布

Fig.8に示すa~kの計11点で主流方向(x)の平均速 度プロファイル(U=<u>)と標準偏差(σ_u =<u'²>^{1/2})を評 価し、数値シミュレーションと風洞実験の比較を行っ た.その結果をFig.10(平均速度プロファイル), Fig.11(標準偏差)に示す.ここで、実線が数値シミュレ ーションであり、シンボルが風洞実験(×:2次元尾根 モデル、+:3次元孤立峰モデル)である.記号< >に 関して、2次元尾根モデルを対象にした風洞実験では 時間平均を意味し、数値シミュレーションでは時間平 均および主流直交方向(y)の空間平均を意味する.3 次元孤立峰モデルの場合には、風洞実験と数値シミ ュレーションともに時間平均を意味する.変動成分は u'=u-<u>で定義される.数値シミュレーションでは、 流れ場が十分に発達した無次元時間t=200~300に おいて、GS成分から上記の乱流諸量を算出した.数

Fig.9 時間平均を行った流れ場に対する速度ベク トル図, t=200~300, 上から眺めた様子(z*=0.5h), 3次元孤立峰モデル, hはモデルの高さを示す Velocity vectors for the time-averaged flow field past a three-dimensional isolated-hill, t=200~300, top view(z*=0.5h), h shows the height of the hill

値シミュレーションおよび風洞実験ともに、横軸は各 地点における上空風速U_{ref}で、縦軸はモデル高さhで 正規化した.なお、縦軸のz*はモデル表面からの高さ を示す.

Fig.10に示す平均速度プロファイルに注目する.2 次元尾根モデルおよび3次元孤立峰モデルともに, 全ての地点においてRIAM-COMPACT³⁾による数値 シミュレーション(実線)とSFPによる風洞実験(シンボ ル)の結果は図に示す程度の一致を得た.ここには示 さなかったが,モデルが無い場合においてFig.2のA 点で近寄り流れを事前に評価し,鉛直方向(z軸方向) にほぼ一様な分布であることを確認した.2次元尾根 モデルと3次元孤立峰モデルの気流性状の違いに注 目する.モデルの上流裾部のa点(x=-2h)からモデル 下流のd点(x=1h)では,両者の違いはほとんど見られ ないが,モデル下流のe点(x=2h)以降では,Fig.8に示

す渦領域を反映して, z*/h<2で顕著な差異が見られ る.3次元孤立峰モデルに関して,特にg点(x=4h)以降 のz*/h<1において,プロファイルがz軸方向にほぼ一 様な分布を示しているのは興味深い.

Fig.11に示す標準偏差の鉛直プロファイルに注目 する.2次元尾根モデルと3次元孤立峰モデルともに, 全ての地点においてRIAM-COMPACT³⁾による数値 シミュレーション(実線)とSFPによる風洞実験(シンボ ル)の結果は良好な一致を得た. モデルの上流裾部 のa点(x=-2h),上流側斜面のb点(x=-1h),頂部のc点 (x=0)では,標準偏差は全ての高さレベルでほぼゼロ である. つまり,モデルへの近寄り流れが有する乱れ の影響はほとんど無いことを示している. モデルの下 流のd~k点では,モデルからの剥離流に起因して生 成された乱れの影響によりz*/h<2において有意な値 を示している. モデル背後のd~g点について, z*/h< 2における標準偏差のピーク値に注目する.2次元尾 根モデルおよび3次元孤立峰モデルはほぼ同程度で ある.その位置はd点とe点はほぼ同じであるが,f点と g点では両者に差異が生じ,3次元孤立峰モデルの方 が2次元尾根モデルと比較して下方に位置している.

3次元孤立峰モデルを対象にした風洞実験に関し て, 主流直交方向(y)の中央面(y=0)からずれた位置 (y=h, 2h, 3h)での平均速度プロファイルと標準偏差の 分布をFig.12に示す.同時に、これらの乱流諸量を評 価した位置も示す. Fig.12(a)に示すy=hの結果に注目 する. c点(x=0)では、地面近くで流れの局所的な増速 が確認される. e点(x=2h)では, z*/h<1でモデルの影 響によりプロファイルに速度欠損が見られる.これに 伴い,標準偏差の値も他の位置と比較して若干大き い. e点(x=2h)より下流の地点では, 平均速度プロファ イルと標準偏差にモデルの顕著な影響は見られない. Fig.12(b), (c)に示すy=2h, 3hの結果についても, 平均 速度プロファイルと標準偏差に対してモデルの顕著 な影響はほとんど見られない. 特にy=3hでは, 標準偏 差の値もほとんどゼロであり、滑面上に薄い層流境界 層が形成されている状態であることが分かる.これら の結果は, Fig.7(a)の流線図(y=h, 2h)の様子からも容 易に想像される.本研究の実験条件では、モデル下 流に形成される後流の影響は,主流直交方向(y)にそ れほど広くは及んでいないことが明らかになった.

d)FFTによる孤立渦と大規模渦のスペクトル解析

ここでは、2次元尾根モデルと3次元孤立峰モデル の風洞実験の結果を用い、Fig.4およびFig.5に示した、 モデル頂部付近から剥離したせん断層が形成する孤 立渦と、それらが合体して形成される大規模渦の放出 周期に関する比較検討を行う.孤立渦と大規模渦の 時間的な挙動を明らかにするため、平均値からのず れu'(=u-<u>)の時間変化の一部(10~15s)をFig.13と Fig.14に示す.また併せて、時系列データを取得した 位置(A点、B点、C点)を示す.時系列データを取得し た主流直交方向(y)の位置は、2次元尾根モデルと3 次元孤立峰モデルともに同じで中央面(y=0)である.A 点、B点、C点はFig.4およびFig.5から決定した.

Comparison of the mean-velocity profiles and the standard deviations at y=h, 2h, 3h, experiment by SFP

Fig.13の結果に注目する.2次元尾根モデルと3次元 孤立峰モデルともに,波形変動の様子は類似してい る.すなわち,孤立渦の放出を示す短周期の鋭いピ

ークが明確に観察される. Fig.14でも両者の波形はほ ぼ同じ傾向を示している. Fig.13と比較すると, 波形に 長周期の変動が見て取れる、この結果から、孤立渦と 大規模渦の放出周期には明らかな違いがあることが 分かる. さらに詳細な検討を行うため, Fig.13とFig.14 に示す時系列データ(t=0~100s, 50,000個)に基づい てスペクトル解析を行った.この結果をFig.15に示す. パワースペクトルの計算にはFFT(高速フーリエ変換) を用いた. 全データを1024個(=210個)ごとに48分割し, その変動成分に対してパワースペクトルを求め、これ らのアンサンブル平均を行った.縦軸は周波数f(Hz) と標準偏差 g (m/s)で無次元化されたパワースペクト ルを示し, 横軸は無次元周波数St(=fh/U)を示す. こ こで,hはモデル高さ,Uは一様流入風速である. Fig.15(a)では、孤立渦の放出に対応するスペクトルの 鋭いピークが見られる(図中に矢印で表示). その位置 は、2次元尾根モデルと3次元孤立峰モデルでほぼ同 じであり、St=0.87である. これはf=13Hz(周期約

(b)大規模渦を対象にした結果, Fig.13のB点, C点 Fig.15 パワースペクトルの比較, 風洞実験(SFP) Comparison of the power spectra, experiment by SFP

0.08s)となり、両者ともに1s間に約13個の孤立渦が計 測点Aを通過していることを意味する. Fig.15(b)につ いても、大規模渦の放出を示すピークが見られる(図 中に矢印で表示). ここで特筆すべきは, 孤立渦の放 出周期は2次元尾根モデルと3次元孤立峰モデルで 同じであるのに対し、大規模渦の放出周期には差異 が見られるということである.2次元尾根モデルの場合 が、3次元孤立峰モデルに比べてStが小さい、2次元 尾根モデルの場合はSt ≒0.067であり、3次元孤立峰 モデルの場合はSt≒0.27である.これは,前者の場合 f ≒ 1Hz(周期約1s),後者の場合はf ≒ 4Hz(周期約 0.25s)となる. この結果から, 同じ断面形状を有する2 次元尾根モデルと3次元孤立峰モデルでは、後者の 方が大規模渦の放出周期は短いことが示された.こ れは3次元孤立峰モデルの場合、モデルを乗り越える 流れと迂回する流れが相互干渉し,結果として渦放 出が促進されていると考えられる. Fig.15(b)では, コ ルモゴロフの-2/3則がほぼ再現されていることも見て 取れる.

Fig.6では、3次元孤立峰モデル背後における水平 渦形成と、この放出の存在を示した.ここでは、幾つ かの高さレベルで水平渦の放出周期に違いがあるの かを検討する.この目的に対し、Fig.12に示すx=2h(e 点)、y=hの高さレベルz=0.1、0.2、0.5、0.7hの時系列 データを用い、スペクトル解析を行った.先と同様、時 系列データは風洞実験の結果を用いた.その結果を

Comparison of the power spectra at x=2h, y=h, z=0.1, 0.2, 0.5, 0.7h, experiment by SFP

Fig.16に示す.Fig.16(a)には全体図を,Fig.16(b)には Fig.16(a)に実線で囲んだ部分の拡大図を示す. Fig.15(a)の孤立渦の放出を示すStとほぼ同じ位置で ピークが見られる(図中に矢印で表示).Fig.16(b)に注 目すると,地面の粘性の影響により,高さレベルが低 くなるにつれて,矢印付近のピーク値が減少している のが分かる.高さレベルの違いによる渦放出周期の 差異は確認されず,ほぼ同じ周期で水平渦がモデル 下流に放出されていることが示された.

5. おわりに

流入気流プロファイルの勾配や乱れ, 地形表面の 粗度などの影響を省略した状況で,単純地形が一様 流に与える影響を詳細に調べることを目的とし、3次 元孤立峰モデルを対象に風洞実験を行った.併せて, LESに基づいた非定常・非線形風況シミュレータ RIAM-COMPACT³⁾による数値シミュレーションを同じ 条件で実施した. その結果, 前報2)の主流直交方向 (y)に同じ断面形状を有する2次元尾根モデルの場合 と同様, SFPを用いた風洞実験ではモデル下流にお ける複雑乱流場の挙動が精度良く再現された.これら の結果は数値シミュレーションと良好な一致を示した. 特に本研究では,前報2の結果との比較を通して,モ デル背後に形成される渦領域の大きさ,それに伴う気 流性状,さらに非定常な渦放出周期に注目し,両者 の共通点と相違点などを明らかにした.なお、本研究 で得られた風洞実験の結果の一部をAppendixに掲載 している.これらが計算コード検証用のデータベース として活用されれば幸いである.

謝辞

本研究では,当時,九州大学大学院工学府航空 宇宙工学専攻大学院生であった宮崎康伸君,阿部 光一君に多大な協力を頂いた.ここに記して感謝の 意を表します.

参考文献

1) 内田孝紀,杉谷賢一郎,大屋裕二:一様流中の

2次元崖状地形まわりの気流性状に関する実験 的研究,日本風工学会論文集,第95号,2003, pp.233-244

- 2) 内田孝紀,杉谷賢一郎,大屋裕二:一様流中に 置かれた急峻な単純地形まわりの気流性状の評 価一2次元尾根モデルの場合一,日本風工学会 論文集, Vol.29, No.3, 2004, pp.35-43
- 内田孝紀,大屋裕二,風況予測シミュレータ RIAM-COMPACTの開発,日本流体力学会誌 "ながれ", Vol.22, No.5, 2003, pp.417-428
- 4) 梶島岳夫,太田貴士,岡崎和彦,三宅裕:コロ ケート格子による非圧縮流れの高次差分解析, 日本機械学会論文集,(B編),63巻,614号, 1997, pp.3247-3254
- T. Kawamura, H. Takami and K. Kuwahara : Computation of high Reynolds number flow around a circular cylinder with surface roughness, Fluid Dyn. Res., Vol.1, 1986, pp.145-162
- J. W. Deardorff : A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., Vol.41, 1970, pp.453-480

Appendix

以下に, Fig.10(平均速度プロファイル), Fig.11(標 準偏差)で用いた風洞実験の数値データ(a点~g点) を示す.計測位置はFig.8を参照していただきたい. 記号の意味は以下に示す通りである.

h	3次元孤立峰モデルの高さ		
z*	モデル表面からの高さ		
u	瞬間値(主流方向の速度成分)		
u'	変動成分(=u- <u>)</u>		
U	平均值(= <u>)</u>		
σ_{u}	標準偏差(= <u'²>¹/²)</u'²>		
$\langle \rangle$	100sの時間平均		
Urof	各地点における上空風速		

a点, x=−2h				b点, x=−	1h
z*/h	$\rm U/U_{ref}$	$\sigma_{\rm u}/U_{\rm ref}$	z*/h	$\rm U/U_{ref}$	$\sigma_{\rm u}/U_{\rm ref}$
0.05	0.297	0.0236	0.05	0.779	0.0227
0.10	0.834	0.0114	0.10	0.811	0.0154
0.20	0.836	0.0066	0.20	0.872	0.0045
0.50	0.859	0.0040	0.50	0.956	0.0042
0.70	0.884	0.0040	0.70	0.978	0.0039
1.00	0.925	0.0039	1.00	0.978	0.0039
1.20	0.924	0.0043	1.20	0.992	0.0039
1.50	0.952	0.0048	1.50	0.991	0.0037
2.00	0.966	0.0041	2.00	0.990	0.0039
2.50	0.978	0.0045	2.50	0.998	0.0041
3.00	0.991	0.0046	3.00	0.998	0.0044
4.00	1.000	0.0042	3.50	1.000	0.0037

c点, x=0				d点, x= 1	lh
z*/h	${\rm U}/{\rm U}_{\rm ref}$	$\sigma_{\rm u}/U_{\rm ref}$	z*/h	${\rm U}/{\rm U}_{\rm ref}$	$\sigma_{\rm u}/U_{\rm ref}$
0.05	0.284	0.0552	0.05	-0.089	0.0933
0.10	1.091	0.0123	0.10	-0.119	0.0973
0.20	1.078	0.0083	0.20	-0.108	0.0918
0.50	1.052	0.0059	0.50	0.065	0.1675
0.70	1.034	0.0058	0.70	0.921	0.1926
1.00	1.024	0.0045	1.00	1.073	0.0110
1.20	1.014	0.0043	1.20	1.050	0.0060
1.50	1.008	0.0044	1.50	1.039	0.0043
2.00	1.007	0.0049	2.00	1.018	0.0036
2.50	1.004	0.0047	2.50	1.014	0.0041
3.00	1.000	0.0045	3.00	1.005	0.0040
			3.50	1.000	0.0035

e点, x=2h				f点, x=3	h
z*/h	$\rm U/U_{ref}$	$\sigma_{\rm u}/U_{\rm ref}$	z*/h	${\rm U}/{\rm U}_{\rm ref}$	$\sigma_{\rm u}/U_{\rm ref}$
0.05	-0.248	0.1317	0.05	-0.049	0.1430
0.10	-0.244	0.1443	0.10	-0.013	0.1522
0.20	-0.235	0.1447	0.20	-0.005	0.1519
0.50	-0.268	0.1629	0.50	-0.019	0.1721
0.70	-0.159	0.2073	0.70	0.122	0.2251
1.00	0.339	0.2605	1.00	0.513	0.2721
1.20	0.790	0.2322	1.20	0.803	0.2096
1.50	1.075	0.0391	1.50	1.004	0.0495
2.00	1.036	0.0096	2.00	1.006	0.0117
2.50	1.016	0.0055	2.50	1.000	0.0059
3.00	1.010	0.0049	3.00	1.002	0.0047
4.00	1.000	0.0046	4.00	1.000	0.0037

g点, x=4h			
z*/h	$\rm U/U_{ref}$	$\sigma_{\rm u}/U_{\rm ref}$	
0.05	0.288	0.1656	
0.10	0.367	0.1667	
0.20	0.340	0.1564	
0.50	0.333	0.1816	
0.70	0.424	0.2101	
1.00	0.692	0.2156	
1.20	0.854	0.1632	
1.50	0.960	0.0582	
2.00	0.985	0.0129	
2.50	0.990	0.0069	
3.00	0.998	0.0046	
4.00	1.000	0.0036	