

ー様流中に置かれた急峻な単純地形まわりの気流性状の評価 2次元尾根モデルの場合

Evaluation on Wind Characteristics around a Steep Simple Terrain in a Uniform Flow -Case of a Two-Dimensional Ridge Model-

> 内田 孝紀^{*1} 杉谷 賢一郎^{*2} 大屋 裕二^{*3} Takanori UCHIDA, Kenichirou SUGITANI, Yuji OHYA

SUMMARY

The purpose of this research is to construct a database of a non-stratified airflow past a steep simple terrain under an imposition of a uniform flow, and, in addition, is to do the accuracy inspection of the numerical model under development at present. This numerical model is referred to as the RIAM-COMPACT (<u>Research Institute for Applied Mechanics</u>, Kyushu University, <u>Computational Prediction of A</u>irflow over <u>Complex Terrain</u>), and is for the purpose of the prediction of airflow over complex terrain with several m to several km.

This paper describes the experimental and numerical study of a non-stratified airflow past a two-dimensional ridge in a uniform flow as the first phase. The Reynolds number, based on the uniform flow and the height of the ridge, is about 10^4 . Airflows around the ridge include the unsteady vortex shedding. Attention is focused on airflow characteristics in a wake region. For this purpose, the velocity components in the streamwise direction were measured with a SFP (<u>Split-Film</u> <u>P</u>robe) in the wind tunnel experiment. In addition, the flow visualization was performed by using the smoke-wire technique. Through comparison of the experimental and numerical results, they showed a good agreement. The accuracy of both of the wind tunnel experiment by the SFP and also numerical simulation by the RIAM-COMPACT were confirmed as the result.

1.はじめに

現在,急峻な地形起伏に起因して生じる流れの衝突,剥離,再付着,逆流など,風に対する地形効果を 高精度に予測するための数値モデルの開発が各方 面で精力的に行われている.例えば文献^{1,2)}がある. これらの研究では,乱流モデルとしてRANS(<u>R</u>eynolds <u>Averaged Navier-Stokes equation</u>)が採用されている. 同時に,数値モデルの予測精度を検証するための風 洞実験も実施されている^{1,2)}.ここでは,流入気流の 乱れの影響を考慮し,地形が大気乱流境界層(自然 風)に完全に埋没した状態を模擬している.また,地 形表面を覆う植生の影響も計算に取り入れられている. これに対し,我々は数百m~数(十)km程度の局所域 スケールに的を絞り,LES(Large-Eddy Simulation)に 基づいた数値モデルRIAM-COMPACT(Research Institute for Applied Mechanics, Kyushu University, <u>Computational Prediction of Airflow over Complex</u> Terrain)を開発している³.

*1 九州大学応用力学研究所 助手 工博 Research Associate, Research Institute for Applied Mechanics, Kyushu University, Dr. Eng.

 *2 九州大学応用力学研究所 技官 Technical Staff, Research Institute for Applied Mechanics, Kyushu University
 *3 九州大学応用力学研究所 教授 工博

Professor, Research Institute for Applied Mechanics, Kyushu University, Dr. Eng.

一般に,LESなどの非定常流体シミュレーションの 計算コードを開発する際には,最初のステップとして 流入気流プロファイルの勾配や乱れ,地形表面の粗 度の影響を省略した,すなわち,単純化・理想化され た状況でその予測精度(風に対する地形効果)を検証 し,次のステップとして実際の自然風を対象にした計 算へ進むことが望ましい.以上の理由から,計算コー ドの検証を目的とし,単純化・理想化された条件設定 で行われた風洞実験の需要は極めて高い.しかしな がら,そのような実験データはこれまでにほとんど報 告されていない⁴.

そこで本研究では,流入気流の乱れや地形表面の 粗度の影響などは省略し,一様流中に置かれた急峻 な単純地形を過ぎる流れ場を対象に風洞実験を行う. この風洞実験の目的は,計算コードの予測精度を検 証するためのデータを取得することである.本報では, 第一段階として主流直交方向に同じ断面形状を有す る2次尾根モデルを対象にする.また同時に,非定常 風況シミュレータRIAM-COMPACTによる数値シミュ レーションを風洞実験と同一条件で行ったので,その 結果も併せて示す.

2.スプリットフィルムプローブ(SFP)による風洞実験

本研究の風洞実験は、九州大学応用力学研究所 の温度成層風洞を用いて行った、但し、気流の安定 度は中立状態とする.この風洞は開放型の吸い込み 式で長さ13.5m×幅1.5m×高さ1.2mの測定胴を有す る.風速範囲は0.5~2.0m/sであり,主流風速を 1.0m/sに設定した際の主流方向の乱れ強さの分布は 0.4%程度である.2次元尾根モデルへの近寄り流れ として一様流入条件を課すため、以下に示す二つの 工夫を施した.一つは,風洞床面の上流側に高さ 11.5cmの台座を置き,この上に2次元尾根モデルを設 置した.これは風洞床面に発達する地面境界層の影 響を受けないようにするためである.もう一つは,先端 に僅かな傾斜を付けた10cmのアルミ板をモデル前縁 から設置し,そこからの流れの剥離を抑制した(Fig.2も 参照).本研究で使用した2次元尾根モデルの断面は 以下の式で記述されるコサイン形状である.

$z(x)=0.5h \times \{1+\cos(x/a)\}$

(1)

2次元尾根モデルは厚さ0.2, 0.35mmのプラスチッ ク板とダウ化工(株)のウッドラックを用いて自主制作し た. モデル高さhは10cmとし, 実大気スケールの約 1/2000を想定している.(1)式における地形形状パラメ ータaは2h(=20cm)とし,急峻な傾斜角度を有する2次 元尾根モデルを対象とする.モデルの主流方向にx 軸を, 主流直交方向にy軸を, 鉛直方向にz軸を設定 する.モデルのy方向の長さはL 9h(=91cm)である. モデル高さhと風洞高さH=1.2mとのブロッケージ比は H/h=12であり,対応する閉塞率(=h/H×100)は8.3% である.なお,毛足の長さz,=5mm(z,/h=0.05)の人工芝 をモデル表面とその下流地面上に添付し,気流性状 に対する地表面粗度の影響についても検討を行った. この結果については,本報では省略する.モデルの 設置に関して,y方向に2次元的な流れ場を再現する ため、モデルの両端に端板として上流側の角部をとっ たアクリル(可視化用)とベニヤ板を設置した、気流計 測は逆流と順流が検知可能なSFP(Split-Film Probe) を用いて行った.SFPには日本カノマックス(株)のモデ ル1288(ストレート型)を用い,合わせて同社の熱線流 速計(1010CTAユニット, 1013リニヤライザ)を使用し た.SFPのセンサー部をFig.1に示す.SFPは細い石英 ロッドの表面に蒸着させた白金フィルムに2本のスプリ ット(分割線)をひき,2枚の半円筒形熱膜を形成させ たものである.センサー部は直径152µm,有効受感 部長さ2mm, 分割線の幅約13µmである.

Fig.1 スプリットフィルムプローブのセンサー部 Tip of a SFP

本研究では,SFPの分割面がz軸と平行になるよう にモデルの上方から挿入し,鉛直方向(z)にトラバース しながら主流方向(x)の速度成分(u)のみを測定した. SFPでは,スカラー風速U_Nと風向角度の較正が必 要になる.U_Nはそれぞれのフィルムセンサー1,2の出 力電圧E₁, E₂の和から, はE₁, E₂の差から求める. U_Nとが分かれば,uは(2)式から求めることができる. なお,校正定数の算出にはスタットソフトジャパン(株) の統計解析ソフトSTATISTICAを用いた.

$u=U_{N} \cdot \cos \theta$

(2)

電圧値の時系列データはオフセット電圧(シフト電 圧)2.5V,アンプ(ゲイン)1倍,カットオフ周波数200Hz のローパスフィルターの処理を行い,A/D変換ボード を介してサンプリング周波数500Hzでパーソナルコン ピュータに取り込む.一連のデータ収集には,カノー プス(株)のDSS for Windowsを用いた.これはカノープ ス製のA/D変換ボード「ADXM-98シリーズ」を利用し, Windows上でアナログ信号をデジタル信号として取り 込むためのアプリケーションソフトウェアである.電圧 値の時系列データは学内LANでワークステーションに 転送し,そこで速度成分(u)に変換して平均速度と標 準偏差の鉛直分布を求める.各測定点におけるデー タ数は50,000個で100sのサンプリング時間(平均時間) である. 一様流入風速はU=1.5m/sとし, モデルへの 風向角度は0度である. モデル高さh=10cmに基づい たレイノルズ数Re(=Uh/)は約10⁴である. なお, 気流 のモニターやSFPの較正に必要な風速の基準値の測 定には, 超音波流速計(カイジョーDA-600, TR-90AX 型プローブ)を使用した.

非定常風況シミュレータRIAM-COMPACTによる 数値シミュレーション

本研究では、2次元尾根モデルを過ぎる流れ場の 数値シミュレーションを風洞実験と同一条件で行った. 数値計算法は以下に示す通りである.流れの支配方 程式は,フィルタ操作を施された非圧縮流体の連続 の式とナビエ・ストークス方程式である.一般曲線座標 系のコロケート格子に基づき,(有限)差分法により数 値解を求める.計算アルゴリズムは部分段階法(F-S 法)に準じ,時間進行法はオイラー陽解法に基づく. 圧力に関するポアッソン方程式はSOR法により解く. 空間項の離散化は、フィルタ操作を行ったナビエ・スト ークス方程式の対流項を除いてすべて2次精度中心 差分とし,対流項については3次精度風上差分とする. ここで,対流項を構成する4次精度中心差分は梶島に よる補間法5)(4点差分+4点補間)を用いる.また,数 値拡散項の重みは通常使用されるK-Kスキーム⁶⁾タイ プの =3に対して, =0.5としその影響は十分に小さ

Fig.2 計算領域と座標系

Computational domain and coordinate system

くする. SGSモデルには標準的なスマゴリンスキーモ デル⁷⁾を用いる.計算領域と座標系をFig.2に示す.主 流方向(x), 主流直交方向(y), 鉛直方向(z)に40h(± 20h)×9h×10hの空間領域を有し、風洞実験とほぼ同 じである. ここで, hはモデルの高さである. 格子点数 はx, y, z方向に260×91×71点である.2次元尾根モ デル近傍における計算メッシュをFig.3に示す. x方向 ^{尾根モデル} の格子幅は不等間隔に(0.04~1)h, y方向の格子幅 は等間隔に0.1h, z方向の格子幅は不等間隔に (0.0035~0.5)hである. Fig.2に示すように, 流入境界 面は一様流入条件, 側方境界面と上部境界面は滑り 条件, 流出境界面は対流型流出条件とする. 地面は 風洞実験と同じ条件を課すため、流入境界面から17h までは滑り条件とし、それより下流にのみ粘着条件を 課した. レイノルズ数は風洞実験と同様, モデル高さh と一様流入風速Uに基づき, Re(=Uh/ v)=10⁴とした. 時間刻みは $\Delta t=2 \times 10^{-3}h/Uとした$.

4. 結果および考察

2次元尾根モデルまわりの風況パターン(瞬間場)の 比較をFig.4に示す.風洞実験では、スモークワイヤー 法により流れ場の可視化を行った.この方法では以 下のように流れ場を視覚化する.モデルのすぐ上流 で高さレベルを変えて数本のワイヤー(0.3mmのニクロ ム線)を平行に配線する.これに流動パラフィンとアル ミ粉を混ぜたものを塗り、ワイヤーに通電して加熱し、 気化した煙で流れ場を可視化する.照明装置としてス リットを付けた1kWのプロジェクターを風洞上部に3~ 4台設置し、これからの光でモデルのスパン中央断面 (y=0)を可視化した.カメラによる撮影は標準レンズを

Fig.4 2次元尾根モデルまわりの風況パターン の比較, 瞬間場, 横から眺めた様子(y=0) Comparison of the instantaneous flow pattern around a two-dimensional ridge model, side view(y=0)

用い, 絞りは1.2でシャッタースピード(露出時間)は 1/125sとした.風速は1.5m/sで,気流計測と同じ条件 である.特にモデルの頂部付近で剥離した境界層(剥 離せん断層)の挙動に注目するため,煙がモデルの 表面近くを流れるようにワイヤー高さを調節した.一方, 数値シミュレーションでは,パッシブ粒子追跡法により 流れ場の可視化を行った.パッシブ粒子の放出間隔 (無次元時間)はΔt=0.1で合計100コマ(無次元時間 t=100~110)のデータである.数値シミュレーションお よび風洞実験ともに定性的な流れの挙動は非常に類 似している.すなわち,流れはモデルの頂部付近で 剥離し,剥離したせん断層は孤立した渦に巻き上が っている.Fig.4(b)に示す数値シミュレーションの結果 において,矢印を参照していただきたい.これらの孤 立した渦は次々に合体して剥離バブルを形成し,ここ から大規模渦(横渦)が放出されて流下している.数値 シミュレーションに関して,モデルの主流直交方向(y) の流れ構造(流線図)をFig.5に示す.流線の広がり部 などが明確に観察される.以上のように,モデル背後 の流れは複雑乱流場を呈している.

数値シミュレーションに関して,時間平均および主 流直交方向(y)の空間平均を行った流れ場に対して 描いた流線図をFig.6に示す.時間平均は無次元時 間t=200~300で行った.モデルの背後には渦領域が 形成されている.その中心は,モデルの頂部から約4h 下流に位置する.渦領域の大きさ,つまり,モデルの 頂部付近から剥離したせん断層が下流側地面上に 再付着する位置は,モデルの頂部から約8hである.

Fig.6に示すa~kの計11点で主流方向(x)の平均速 度プロファイル(U=<u>)と標準偏差(σ_u=<u²>^{1/2})を評 価し, RIAM-COMPACTによる数値シミュレーションと SFPによる風洞実験の比較を行った. その結果を Fig.7(平均速度プロファイル), Fig.8(標準偏差)に示す. ここで,実線が数値シミュレーションであり,シンボル が風洞実験である. 記号< >に関して, 風洞実験では 時間平均を意味し,数値シミュレーションでは時間平 均および主流直交方向(y)の空間平均を意味する.変 動成分はu'=u-<u>で定義される. 数値シミュレーショ ンでは、2次元尾根モデルまわりの流れ場が十分に発 達した無次元時間t=200~300において, GS成分から 上記の乱流諸量を算出した. 数値シミュレーションお よび風洞実験ともに,横軸は各地点における上空風 速Urefで、縦軸はモデルの高さhで正規化した.なお、 縦軸のz*はモデル表面からの高さを示す.

Fig.7に示す平均速度プロファイルに注目する. 全 ての地点においてRIAM-COMPACTによる数値シミュ レーション(実線)とSFPによる風洞実験(シンボル)の結 果は図に示す程度の一致を得た.以下では,それぞ れの地点における気流性状を考察する. ここには示さ なかったが、モデルが無い場合において事前にFig.2 のA点で近寄り流れを評価し,鉛直方向にほぼ一様 であることを確認した. モデルの上流裾部のa(x=-2h) では、モデルの影響により、平均速度プロファイルは z*/h<2で減速している. モデルの上流側斜面の b(x=-1h)では, z*/h<2における下層部の流れは若干 回復している. モデルの頂部のc(x=0)では, モデル表 面のすぐ上方で流れが局所的に増速している. モデ ルの下流のd(x=1h), e(x=2h), f(x=3h), g(x=4h), h(x=5), i(x=6h), j(x=7h)では, Fig.6に示す渦領域を反映して, z*/h<2で流れの減速と逆流が明確に観察される.ま た,下流に向かうに従い,z*/h<2の流れは徐々に回 復している. モデルから最も離れたk(x=8h)では, 平均 速度プロファイルに大きなマイナスの領域は見られず, 最下層でほぼゼロの値を示している.この結果からも, 剥離したせん断層の再付着位置が,モデルの頂部か ら約8hであることが理解される.

Fig.8に示す標準偏差の鉛直プロファイルに注目す る.標準偏差の分布についても,全ての地点におい てRIAM-COMPACTによる数値シミュレーション(実 線)とSFPによる風洞実験(シンボル)の結果は良好な 一致を得た.モデルの上流裾部のa(x=-2h),上流側 斜面のb(x=-1h),頂部のc(x=0)では,標準偏差は全て

Fig.7 平均速度プロファイルの比較,実線:数値シミュレーション(RIAM-COMPACT),シンボル:風洞実験(SFP) Comparison of the mean-velocity profiles, line : calculation by RIAM-COMPACT, symbol : experiment by SFP

の高さレベルでほぼゼロである.つまり,モデルへの 近寄り流れが有する乱れの影響はほとんど無いことを 示している.モデルの下流のd~kでは,z^{*}/h<2にお いて有意な値を示している.これはモデルからの剥離 流に起因して生成された乱れの影響を示すものであ る.特にd~iでは,z^{*}/h<2において鋭いピークが観 察される.これは,Fig.7に示す平均速度プロファイル と併せて吟味すると,それぞれの位置における平均 速度プロファイルが急変する場所,すなわち,速度勾 配が大きく変化する領域に対応している.これはモデ ルから剥離したせん断層の挙動を明確に示すもので ある.

Fig.8 標準偏差の比較,実線:数値シミュレーション(RIAM-COMPACT),シンボル:風洞実験(SFP) Comparison of the standard deviations, line : calculation by RIAM-COMPACT, symbol : experiment by SFP

5.おわりに

流入気流プロファイルの勾配や乱れ,地形表面の 粗度などの影響を省略した状況において,単純地形 が流れに与える影響を詳細に調べることを目的とし, 一様流中に置かれた2次元尾根モデルを対象に風洞 実験を行った.併せて,同じ条件で現在開発中の非 定常風況シミュレータRIAM-COMPACTによる数値シ ミュレーションを実施した.流れの可視化や気流性状 の比較など,定性的および定量的な比較を試みた. その結果,SFPを用いた風洞実験では,モデルの下 流における流れの剥離や再付着など,複雑乱流場の 挙動が精度良く再現された.また同時に,これらの結 果はRIAM-COMPACTによる数値シミュレーションと 良好な一致を示した.以上から,複雑乱流場に対す るRIAM-COMPACTの予測精度が確認された.現在, 一様流中に置かれた3次元孤立峰モデルを対象に風 洞実験および数値シミュレーションを行っており,この 結果については次報で報告する予定である.本研究 における結果が,計算コード検証用のデータベースと して活用されれば幸いである(Appendixを参照).

謝辞

本研究では,当時,九州大学大学院工学研究科 航空宇宙工学専攻大学院生であった宮崎康伸君に 多大な協力を頂いた.ここに記して謝意を表します.

参考文献

- 村上周三,持田灯,加藤信介,木村敦子,局所 風況予測システムLAWEPSの開発と検証,日本 流体力学会誌"ながれ", Vol.22, No.5, 2003, pp.375-386
- 石原孟,非線形風況予測モデルMASCOTの開発とその実用化,日本流体力学会誌"ながれ", Vol.22, No.5,2003,pp.387-396
- 内田孝紀,大屋裕二,風況予測シミュレータ RIAM-COMPACTの開発,日本流体力学会誌" ながれ", Vol.22, No.5, 2003, pp.417-428
- 4) 内田孝紀,杉谷賢一郎,大屋裕二:一様流中の
 2次元崖状地形まわりの気流性状に関する実験
 的研究,日本風工学会誌,第95号,2003,
 pp.233-244
- 5) 梶島岳夫,太田貴士,岡崎和彦,三宅裕: コロ ケート格子による非圧縮流れの高次差分解析, 日本機械学会論文集,(B編),63巻,614号, 1997,pp.3247-3254
- T. Kawamura, H. Takami and K. Kuwahara : Computation of high Reynolds number flow around a circular cylinder with surface roughness, Fluid Dyn. Res., Vol.1, 1986, pp.145-162

 J. W. Deardorff : A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech., Vol.41, 1970, pp.453-480

Appendix

以下に, Fig.7(平均速度プロファイル), Fig.8(標準 偏差)で用いた風洞実験の数値データを示す.計測 位置はFig.6を参照していただきたい.記号の意味は 以下に示す通りである.

h	2次元尾根モデルの高さ
z*	モデル表面からの高さ
u	瞬間値(主流方向の速度成分)
u'	変動成分(=u- <u>)</u>
U	平均値(= <u>)</u>
u	標準偏差(= <u'<sup>2>^{1/2})</u'<sup>
< >	100sの時間平均
U_{ref}	各地点における上空風速

a点, x=-2h				b点, x=-	1h
z [*] /h	U/U_{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U_{ref}	$_{\rm u}/{\rm U}_{\rm ref}$
0.05	0.266	0.0171	0.05	0.544	0.0504
0.10	0.646	0.0047	0.10	0.683	0.0497
0.20	0.670	0.0052	0.20	0.766	0.0055
0.50	0.730	0.0045	0.50	0.875	0.0043
0.70	0.773	0.0038	0.70	0.923	0.0051
1.00	0.833	0.0038	1.00	0.958	0.0041
1.20	0.859	0.0037	1.20	0.958	0.0041
1.50	0.875	0.0038	1.50	0.984	0.0039
2.00	0.925	0.0035	2.00	0.981	0.0035
2.50	0.948	0.0035	2.50	0.985	0.0035
3.00	0.964	0.0038	3.00	0.997	0.0039
4.50	1.000	0.0035	4.00	1.000	0.0034

T.						
c点, x=0				d点, x=1	h	
z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U_{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	
0.05	0.071	0.0354	0.05	-0.050	0.0645	
0.10	1.067	0.0331	0.10	-0.063	0.0752	
0.20	1.113	0.0119	0.20	-0.063	0.0726	
0.50	1.089	0.0068	0.50	-0.052	0.1031	
0.70	1.076	0.0049	0.70	0.780	0.2219	
1.00	1.044	0.0048	1.00	1.103	0.0155	
1.20	1.045	0.0049	1.20	1.098	0.0080	
1.50	1.031	0.0037	1.50	1.081	0.0051	
2.00	1.031	0.0037	2.00	1.053	0.0038	
2.50	1.008	0.0038	2.50	1.032	0.0035	
3.00	1.009	0.0033	3.00	1.020	0.0044	
3.50	1.000	0.0032	4.00	1.000	0.0032	

	e点, x=2	?h		f点, x=3	h		i点, x=6	h		j点, x=7	h
z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U_{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U_{ref}	$_{\rm u}/{\rm U}_{\rm ref}$
0.05	-0.020	0.0353	0.05	-0.076	0.0835	0.05	-0.239	0.1250	0.05	-0.157	0.1350
0.10	-0.031	0.0835	0.10	-0.156	0.1046	0.10	-0.259	0.1275	0.10	-0.169	0.1346
0.20	-0.071	0.1038	0.20	-0.187	0.1331	0.20	-0.216	0.1449	0.20	-0.132	0.1550
0.50	-0.134	0.1041	0.50	-0.177	0.1242	0.50	-0.040	0.1795	0.50	0.052	0.1903
0.70	-0.090	0.1040	0.70	-0.138	0.1295	0.70	0.115	0.2052	0.70	0.216	0.2075
1.00	-0.006	0.1392	1.00	0.035	0.1807	1.00	0.335	0.2154	1.00	0.441	0.2081
1.20	0.237	0.2281	1.20	0.276	0.2165	1.20	0.575	0.2032	1.20	0.611	0.1951
1.50	0.976	0.1626	1.50	0.763	0.2214	1.50	0.855	0.1493	1.50	0.876	0.1357
2.00	1.093	0.0121	2.00	1.093	0.0260	2.00	1.042	0.0513	2.00	1.026	0.0324
2.50	1.070	0.0048	2.50	1.066	0.0080	2.50	1.037	0.0144	2.50	1.023	0.0169
3.00	1.041	0.0040	3.00	1.040	0.0044	3.00	1.021	0.0075	3.00	1.010	0.0083
4.50	1.000	0.0035	4.50	1.000	0.0035	4.50	1.000	0.0040	4.50	1.000	0.0042

r					
	g点, x=4	h		h点, x=5	ōh
z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$	z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$
0.05	-0.154	0.0902	0.05	-0.241	0.1068
0.10	-0.269	0.1102	0.1	-0.317	0.1166
0.20	-0.260	0.1300	0.2	-0.269	0.1278
0.50	-0.176	0.1530	0.5	-0.204	0.1664
0.70	-0.097	0.1581	0.7	-0.110	0.1830
1.00	0.1354	0.1929	1.0	0.096	0.2217
1.20	0.3140	0.2174	1.2	0.251	0.2336
1.50	0.700	0.2148	1.5	0.593	0.2451
2.00	1.074	0.0603	2.0	1.026	0.1021
2.50	1.060	0.0114	2.5	1.051	0.0235
3.00	1.037	0.0060	3.0	1.035	0.0099
4.50	1.000	0.0034	4.5	1.000	0.0040

	k点, x=8h				
z*/h	U/U _{ref}	$_{\rm u}/{\rm U}_{\rm ref}$			
0.05	-0.053	0.1320			
0.10	-0.064	0.1298			
0.20	0.002	0.1561			
0.50	0.130	0.1954			
0.70	0.286	0.2010			
1.00	0.524	0.2011			
1.20	0.694	0.1860			
1.50	0.902	0.1168			
2.00	0.998	0.0458			
2.50	1.004	0.0189			
3.00	0.999	0.0091			
4.50	1.000	0.0048			